Microstructural design of gas-sensing materials by utilizing various templates

Takeo Hyodo* and Yasuhiro Shimizu

Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan *E-mail: hyodo@nagasaki-u.ac.jp

Strict meso- and macro-structural controls of gas-sensing materials are essential for developing the sophisticated gas sensors. However, bottom-up fabrication techniques for gas sensors have not so far been established sufficiently. Therefore, our recent studies have focused on the development of mesoporous and/or macroporous materials with different kinds of templates and the improvements of the gas-sensing properties.

Mesoporous oxides

Mesoporous (m-) SnO₂ powders have been prepared from sodium stannate by utilizing a selfassembly of different surfactants such as *n*-cetylpyridinium chloride and blockcopolymers in an aqueous solution as a mesopore template. The most important key to the drastic improvement of their thermal stability is to immerse the m-SnO₂ powders in a phosphoric acid aqueous solution before calcination and consequently loading of phosphorous-components on the surface of m-SnO₂ crystallites. The treatment enables us to prepare the m-SnO₂ powders with small crystallite size (2~3 nm in diameter) and large specific surface area (>300 m² g⁻¹) even after calcination at 600°C. The semiconductor gas sensors fabricated with m-SnO₂ by screen printing showed relatively large responses to H₂ and NOx in air. The surface modification of conventional large oxide particles with m-SnO₂ was very effective in the improvement of gassensing properties. In addition, the loading of Pd or Au to m-SnO₂ nanoparticles or directdeposition of m-SnO₂ tilms by electrophoresis of m-SnO₂ nanoparticles or directdeposition of m-SnO₂ by utilizing electrochemical pH changes at near-electrode surface in an aqueous solution.

Macroporous materials

Macroporous (mp-) films have been fabricated by a modified sol-gel technique or a physical vapor deposition process employing a polymetheylmethacrylate (PMMA) microsphere film as a macropore template. Different kinds of gas sensors fabricated with the mp-semiconductor films (SnO₂ and In₂O₃ to detect H₂, NOx and H₂S), solid-electrolyte-type (Li₂CO₃-BaCO₃ to detect CO₂), photoluminescence-type (SnO₂ mixed with Eu₂O₃ to detect H₂ and NO₂) and quartz crystal microbalance-type (BaCO₃ to detect NO₂) showed larger gas responses as well as fast response and recovery speeds in comparison with those fabricated with a conventional film. In addition, mp-oxide powders have been prepared by pyrolysis of an atomized aqueous precursor solution containing an appropriate amount of PMMA microspheres. The semiconductor gas sensors fabricated with the well-developed mp-oxide powders by screen printing showed excellent gas-sensing properties in comparison with those fabricated with conventional powders without macropores. Recently, we have attempted the introduction of mesopores into the frameworks of the macroporous structures to improve the gas-sensing properties drastically.

Workshop organized by: Nicolae Barsan - University of Tübingen, Germany Kengo Shimanoe - Kyushu University, Japan and Udo Weimar - University of Tübingen, Germany

